
Tweet Classification Study
COMP 380 Neural Networks

James Pala
University of San Diego

apala@sandiego.edu

Marcus Rogers
University of San Diego

marcusrogers@sandiego.edu

Taylor Wong
University of San Diego

taylorwong@sandiego.edu

ABSTRACT

In this project, we explored a data mining and machine learning
study tweet topic classification. This is a sparse-input
classification problem that we will attempt to use a neural network
to solve. Specifically, we explored Tweet topic classification
using different crisis events collected between 2012 to 2013. After
removing stopwords, using a shallow 3-layer back-propagating
network architecture with a large input vector size, we were able
to achieve ~99% training and testing accuracy.

Keywords
Natural language processing (NLP), Twitter trends, text
classification, text processing, neural network.

MAIN REPORT

1. Introduction
As we attempt to design more general artificially intelligent
systems, comprehending and responding to natural speech is a
requirement. A goal for computer systems in the short term is
classification of documents, which allows a system to understand
the topic of a document. Natural Language Processing (NLP),
which text classification is a subfield of, is an inherently difficult
field, as computer systems are not well suited to deal with
human-generated text data. As a result, preprocessing techniques
of the data must be used.

Specifically, our model attempts to classify Tweets, which
presents a unique problem due to their small size. This means that
the input vectors to any model will be sparse. Additionally,
Tweets are noisy and may have information unrelated to the
categories you are classifying, as well information that does not
contribute to the classification of the Tweet. However, if Tweets
can be accurately classified, then Twitter trends can start to be
analysed. This intelligence has an impact in fields from business,
in company and sector analysis, to politics, in election prediction.
Even further, new events could potentially be identified, which
could help authorities respond quickly, or help news organization
learn of new developments quickly.

We applied a shallow neural network on tweets about various
crises. Using several data preprocessing techniques before feeding
the inputs into a backpropagating net implemented with Keras
API, we were able to achieve >99% training and testing accuracy.
We tested the model on several layers of abstraction of our data,
as well as validated with tweets about previously unseen events.
For more information, see the section 3.4.

2. Background
Natural language processing (NLP) has many subfields and
approaches. Showing computers how to deal with language input,
or even understand language, is extremely relevant to allow
automated systems to interact naturally in a dynamic, human
environment. Our research revealed many general statistical as
well as machine learn techniques and experiments that attempted
and, in many cases successfully, achieved NLP tasks. Some
examples include the IBM Watson NLP API. It can analyze the
semantic features of text input, including categories, concepts,
emotion, entities, keywords, metadata, relations, semantic roles,
and sentiment. The link for a demo of the API can be found in
Appendix D. Other examples include the Reuters Tracer program,
which uses (non-neural network) clustering techniques to identify
and rate the newsworthiness of events as they occur using Twitter
data. It claims that it was able to identify the San Bernardino
shooting 7 minutes before traditional news sourcing techniques,
and often is able to recognize newsworthy events up to 60 minutes
before other sources.​8 Other research includes a study which used
Twitter analytics and statistical machine learning techniques to
identify riots before they occur. The paper claims it was able to
predict the Arab Spring riots in Egypt.​7

While the above examples, as well as other research we did,
showed significant research has been done on NLP tasks using
machine learning models such as support vector machines.
However, neural network research on the subject was significantly
more limited, particularly regarding Tweet classification. Because
of this, we focused on a simple neural network approach that
would serve as a proof of concept to Tweet classification.
Fortunately, the text and data preprocessing techniques are the
same, regardless of model type. We researched many different
preprocessing techniques and implemented the ones we thought
would be most effective in our attempt to classify tweets.

3. Approach
We used a prelabeled set of over 25000 Tweets on natural
disasters. We converted these tweets as well as their labels to
formats that could be processed by the net, then fed them to a
shallow, backpropagating net with one hidden layer to attempt to
classify the tweets.

3.1 Data Source and Representation
For this application, we used supervised data and labeled it by
specific categories of crises. We had multiple data sets

categorizing the tweet either by location and event event. The
data set categorized by location and crisis included 25 different
labels (See Appendix D). Additionally, in the dataset with 25
different crisis, there is about 900 tweets per category. The data
set categorized by only crises had 15 different events. For each of
the distinct data sets, we created a script to relabel the original
data we collected and save the newly categorized data into a
separate file. Another way of diversifying the data and
challenging our neural net was to test the net with data it has not
seen before. For testing, we created a separate data set with
similar crisis events, excluding duplicate tweets.

We generated a vector of max features which revealed a unique
challenge: Extremely sparse input vectors because there are a
limited number of words in a tweet but a high number that occurs
in a set of tweets (corpus).

3.2 Preprocessing
In order to prepare the data for classification, it had to be
preprocessed. The four main methods of preprocessing we
researched and utilized were TF-IDF vectors, count vectorizers,
stemming, stop word removal and N-grams. TF-IDF is the most
popular preprocessing technique and is short for term
frequency-inverse document frequency. It is a numerical value
that determines how valuable or important a word is in a tweet. A
TF-IDF vectorizer generally punishes words that are common in a
document or corpus. We did not use this approach to
preprocessing our data because we feared that it could
unintentionally punish words that we deem important in the
corpus. For example, the word “fire” would occur often, since
many of our texts referred to forest fires, yet this word is
important to the correct classification of these tweets, especially
due to the sparse input size. We wanted to avoid punishment of
important words such as this. Instead we removed stop words to
reduce the noise brought about by common words that did not
contribute to the classification. Stop word removal is a basic
preprocessing technique that aims to remove noise and
unnecessary words from each tweet. Some example stop words
are “the” and “a”. Unlike TF-IDF vectors that would just lower
the weight of these words, this method completely removes them
while keeping the meaning of the tweet the same. A higher
TF-IDF value indicates a more important word. The
count-vectorizer simply tokenizes a tweet and then counts how
many times a certain word appears in the tweet. We also
researched stemming as well as n-grams, but did not implement
these techniques because we were able to achieve good results
without them. Stemming is used to reduce the number of different
forms a word can exist as. For instance, the terms “car”, “cars”
and “car’s” would become car. This helps simplify the text while
keeping the original meaning of the text the same. N-grams are a
combination of adjacent words with length n. Depending on the
“n” value, they create sets of words from a tweet. N-grams are
typically used to predict the next word of a sentence. They also
help clump words together that are typically always adjacent to
each other. For instance, the words “high school” and “San
francisco” generally co exist with each other. Another
preprocessing tool we did use is the label binarizer. This allows
us to represent the different categories or outputs as binary
vectors. For instance, the label 1 would have the corresponding
vector [1,0,0,..,0] and label 2 [0,1,0,...,0]. In other words, as the

data is fed through the net, it can only be categorized as one event.
It is either the event or it is not.

3.3 Techniques
After removing stop-words from the data set, we split it up a 75%
training, 25% testing split. We used the Keras API to implement a
three layer, sequential, backpropagating net. This net used the
Adam optimizer, with the Mean Squared Error loss function.
Weights from inputs to any hidden layers (when tested) as well as
to the output layer were set to nonnegative. Our input layer was of
size 100000, and our output layer was the size of the number of
possible categories we were classifying to.

The Adam optimizer was used because it is a recent,
recommended extension to the classic stochastic gradient descent.
the Mean Squared Error (MSE) loss function is a standard loss
function which seeks to minimize the mean loss between the
actual and predicted values, where:

The weights of inputs to hidden layer and hidden layer to outputs
were restricted to be nonnegative. This was because our net did
not seek to find semantic meaning in tweets. Instead we sought to
classify tweets based on topic or event type. In this case, we want
to look out for certain words that would indicate the tweet was
referring to a specific event or type of event. Because these
significant words, in most cases, only indicate an event, and do
not detract from classification, all the weights should be
nonnegative. (If a text is talking about how the forest fires are
gone, the topic is still forest fires, despite it being about being the
absence of them). If our net had sought to understand or parse
semantic meaning, negative weights would have been justified,
for example with words such as ‘not’, which might have needed a
negative weights because of its negative meaning. Finally our
input size, or max features, was set rather large, at 10000. This
means the 10000 most common words in the data set were inputs
in the vector. After experimentation, we discovered that a higher
input vector size allowed the net to be more accurate. This is
because it has more data points to make a classification. We did,
however, remove stopwords. While this was not entirely
necessary (we achieved similar results while they were still in the
data set), we did want the net to be more versatile and have the
potential to handle higher amounts of data. Removing common
words allows it do that because those stopwords do not help
further classify a tweet, and allows the net to have more relevant
information as inputs.

We usually set the number of training epochs to 3, as
more epochs did not affect the accuracy significantly, and too
many brought down the accuracy. Finally, after adjusting the
batch size, we settled the batch size at 32. This is the number of
samples before the net back-propagates the error. A larger number
allows it to generalize more and reduces overfitting. Too high,
however, results in the net generalizing too much and is unable to
correctly classify much of the test set. Finally, the activation

function was a simple linear, although experimentation with other
activation functions yielded similar results.

Finally, the output values of the net were float values,
results of the linear activation functions. We needed the output in
a vector form the size of the number of categories, with only one
node at 1 and the rest set to 0 (since the tweet could only have one
classification). The output node with the largest value
corresponded to the classification, so we set up a find max
function. Since this max node corresponded to the classification,
we set it to 1, and all the others to 0. This was because our labels
for the tweets were label binarized vectors.

 To summarize, the net took in a count vector of size
10000, fed it through a back-propagating neural net with the
Adam optimizer on the MSE loss function with one hidden layer.
The output node were float values, of which we found the highest
node, which corresponded to the classification.

A general schematic of our network, see Appendix D for a larger
version:

3.4 Results
When testing and training on 25 different crisis from different
parts of the world, our training accuracy was ~99.07% and our
testing accuracy was ~97.36%.

When we reduced the data to 15 categories based on the type of
event (ie made the labels represent the abstract crisis, and include
multiple instances of the crisis) the network achieved similar
results. In fact, the test sets were even more effective, at ~99%.

In our final experimentation of this text classification net, we
when we created a validation of events that it had never seen
before, the net was only able to classify them with about 35%
accuracy:

Validation print out: “Test: 2150 out of 6099 correct.”

This validation set consisted of events that were the same type of
events that the net had trained on, but were new instances of the
crises in new locations that it had not seen.

3.5 Analysis
We optimized the hyperparameters of the network for this sparse
input vector text classification problem. The explanation for why
different hyperparameters where given different values is above in
section 3.3. To review, however, the important features of our
network were the nonnegative weights, because words cannot
detract from a classification only contribute (especially as we are
not seeking semantic understanding). Additionally, our input
vector, expressed as max features of the countvectorizer was high,
at 10000-size input vector of the 10000 most common words in
the data set. This input size was relatively large because the higher
this number, generally, the more accurate our testing and training
became. For further explanation of the hyperparameters see
section 3.3. However, an explanation of the results is needed:

After finding the best hyperparameters, when fed the data about
25 separate events, our net achieved a testing accuracy of ~97%.
The accuracy improved the larger the input vector, so it can be
assumed that a larger input vector size is needed for data sets with
categories to classify. However, with this set, we were not able to
increase the training accuracy above 97%. This is mostly likely
because within the data25 set, there are many similar tweets, since
many are referring to the same type of event, but in different
locations, for example one label corresponds to tweets about a
forest fire in Colorado and another corresponds to tweets about a
bushfire in Australia. Additionally, some refer to different events
in the same location, for example floods in Colorado and fires in
Colorado. This ambiguity in the input data makes it hard for the
net to classify with closer to 100% accuracy specific instances of
events in different locations. Despite this, at ~99%, the results are
pretty impressive.

Furthermore, when we trained on more general event data, the test
accuracy of the network increased to the ~99%. When we trained
on the data 15 set, which labeled similar events the same (eg
floods were floods, regardless of where they occured), the
accuracy of training and testing both were ~99%. This is most
likely because the categories were more broad and contained more

data for each set. For example, the 3 examples of floods were now
all in the same set. Not only did the net have 3x the data to train
on for that category, but also had 2-3 different instances of the
same type of event in different locations with different tweets
about them. This allowed it to get a more general understanding of
what referred each of these types of events.

While it was extremely good at tweet-level generalization for
events it had seen before, when we fed the pretrained net tweets
about events it had not seen, it was able to classify these with only
a ~35% accuracy. This shows us that the net is not very good at
event-level generalization and it cannot recognize new, similar
events to ones it has trained on. This could be an advantage, if the
goal of the net is to identify a new, unseen event. This could be
the case in a net that had the goal of recognizing new crises or
events as soon as possible for the authorities benefit, or to allow
for speedy reporting (similar to the Reuters Tracer system). We
think the reason for this lack of ability to generalize on the
event-level is because the net overfits on the data about events
that it is trained on. It is still able to recognize new inputs about
the same events, but it overfits on these events. A solution to this
would be training on data that has no location-specific data, or
implementing a model architecture that prevents this overfitting,
such as deep neural network with dropout.

4. Conclusion
In summary, this shallow neural network takes tweets as inputs
and removes stopwords, then transforms them into a sparse vector
using countvectorizer technique. Once fed through the network,
the max output is found to find the classification the network
assigns to the tweet. We achieved 99% accuracy with tweets
about previously seen events, and ~35% accuracy with tweets
about previously unseen events.

Several conclusions can be drawn from our results:

First, while our set of training/testing data was large, >24000
samples, it was still relatively small in comparison to the >500
million tweets generated per day and >500 billion per year. The
authors had neither the storage nor processor power to approach
this level of data, and so was beyond the scope of this project.
However, this means our data and subsequent results represent a
relatively small portion of the data and events available to
classify. As such, this is more of a proof of concept of event
classification of tweets. Good results came out of this, as the
network was able to classify specific events with an extremely
high degree of accuracy. Additionally, it was also able to
generalize on an topic level about similar events, as long as it had
seen the event before, to an even greater degree of accuracy. We
included several techniques in our network that would allow it to
handle higher levels of data, such as stop word removal, but
further improvement is needed to increase the scale.

Our network was extremely good at memorization of events.
While the tweets themselves in the testing set were new and
unseen by the net, the events they described or referenced had
been seen by the net. The good results were actually quite
surprising. However, when we took it a step further and asked the
net to generalize even further, it did not perform well. We trained
on a variety of events, then fed it validation data of tweets about
events it had never seen before. Although it had seen similar
events in the training, the validation set had new instances of

those same types of crises that it had not been trained on. When
validating on these unseen event tweets, the net achieved only
~35% accuracy. We can draw the conclusion that network must
see an event in the training data before it can classify similar,
unseen tweets about the event. We have shown the network is
good at tweet-level abstraction, but not so good at event-level
abstraction.

4.1 Future Work
Due to the broad applications of text classification and as well as
different variety of categories to classify, there is much future
work that could be potentially explored. Specifically with tweet
classification, the next steps include implementing a stemming
program as well as a TF-IDF approach to the input data. We also
hope to experiment with different network architectures and types
of networks, for example convolutional neural networks and other
deep network types. Our goal would be to increase the event-level
generalization ability of the network.

Additionally, we would like to apply this or similar networks to
sentiment analysis. The problem of text classification is similar,
but is more abstract. Furthermore, since in reality twitter data is
full of noisy tweets unrelated to the topics the be classified, we
would like to implement a noise-reduction step before the tweets
are fed to the network and/or the network would be able to
recognize unrelated data. This perhaps could be achieved through
a threshold, or other methods.

Finally, we would recommend setting up the network to a Twitter
API pipeline to classify realtime data. Eventually, the goal would
be to recognize trends. Additionally the goal would be to identify
events as soon as possible as the occur to benefit the authorities,
as well as attempt to predict possibility of occurrences of events
before they occur.

5. Acknowledgements
Our thanks to Dr. Jiang for a wonderful semester and truly
engaging class on one of the more interesting aspects of our field.

6. References
[1] Romero, Simone, and Karen Becker. “A Framework for

Event Classification in Tweets Based on Hybrid Semantic
Enrichment.” ​ScienceDirect​, Academic Press, 15 Oct. 2018,
www.sciencedirect.com/science/article/pii/S0957417418306
78X#sec0016​.

[2] Bansal, Shivam. “A Comprehensive Guide to Understand
and Implement Text Classification in Python.” ​Analytics
Vidhya​, Analytics Vidhya, 23 Apr. 2018,
www.analyticsvidhya.com/blog/2018/04/a-comprehensive-g
uide-to-understand-and-implement-text-classification-in-pyth
on/.

[3] KazAnova. “Sentiment140 Dataset with 1.6 Million Tweets.”
Kaggle​, Kaggle, 13 Sept. 2017,
www.kaggle.com/kazanova/sentiment140​.

[4] Jain, Shubham. “Ultimate Guide to Deal with Text Data
(Using Python) - for Data Scientists & Engineers.” ​Analytics
Vidhya​, 27 Feb. 2018,

www.analyticsvidhya.com/blog/2018/02/the-different-metho
ds-deal-text-data-predictive-python/.

[5] “Getting Started with the Keras Sequential Model.” ​Keras
Documentation​, Github,
keras.io/getting-started/sequential-model-guide/#specifying-t
he-input-shape.

[6] Kvamme Repp, Oystein. ​Event Detection in Social Media​.
Norwegian University of Science and Technology, June
2016,
brage.bibsys.no/xmlui/bitstream/handle/11250/2410729/1473
7_FULLTEXT.pdf?sequence=1.

[7] Bahrami, Mohsen, et al. ​Twitter Reveals: Using Twitter
Analytics to Predict Public Protests​. Massachusetts Institute
of Technology, 2016, arxiv.org/pdf/1805.00358.pdf.

[8] Liu, Xiaomo, Li, Quanzhi, Nourbakhsh, Armineh, Fang, Rui,
Thomas, Merine, Anderson, Kajsa, Kociuba, Russ, Vedder,
Mark, Pomerville, Steve, Wudali, Ramdev, Martin, Robert,
Duprey, John, Vachher, Arun, Keenan, William, Shah,
Sameena, et al. ​Reuters Tracer: A Large Scale System of
Detecting & Verifying Real-Time News Events from Twitter.​,
2016,
https://www.researchgate.net/publication/309471330_Reuter

s_Tracer_A_Large_Scale_System_of_Detecting_Verifying_
Real-Time_News_Events_from_Twitter.

About the authors:

James Pala is an undergraduate computer science student (Class
of ‘20) with a deep interest in the future of smarter computer
systems and intelligence, and how they can be designed to
improve the human condition.

Taylor Wong ​is an undergraduate computer science student
(Class of ‘19) with a curiosity to learn about various neural
network applications, as well as how machine learning will be
affecting and influencing future generations.

Marcus Rogers is an undergraduate computer science student
(Class of ‘20) with an interest in algorithms and the potential use
of computers.

APPENDIX A: SUPPLEMENTARY INFORMATION

Dataset 25 Labels

Label 1 Colorado Wildfires

Label 2 Costa Rica Earthquake

Label 3 Guatemala Earthquake

Label 4 Italy Earthquake

Label 5 Philippine Floods

Label 6 Pablo Typhoon

Label 7 Venezuela refinery

Label 8 Alberta Floods

Label 9 Australia bushfire

Label 10 Bohol Earthquake

Label 11 Boston Bombing

Label 12 Brazil Nightclub fire

Label 13 Colorado floods

Label 14 Glasgow helicopter crash

Label 15 LA shooting

Label 16 LAC train crash

Label 17 Manila floods

Label 18 NY train crash

Label 19 Queensland floods

Label 20 Russia Meteor

Label 21 Sardinia floods

Label 22 Singapore haze

Label 23 Spain train crash

Label 24 Yolanda typhoon

Label 25 West Texas Explosion

Dataset 12 Labels

Label 1 Fires

Label 2 Earthquakes

Label 3 Floods

Label 4 Typhoons

Label 5 Refinery

Label 6 Bombings

Label 7 Helicopter Crashes

Label 8 Shootings

Label 9 Train Crashes

Label 10 Meteors

Label 11 Haze

Label 12 Explosions

